1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Only divisible by itself and 1.

Remember:

1 is not a prime number

\mathbf{x}	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	110	110	121	132
12	12	24	36	48	60	72	84	96	120	120	132	144

A number multiplied by itself produces a square number.

The opposite of a square number is a square root.

Mean, Mode and Median

Mean	The average when all values are added and then divided by the number of values.
Mode	The most popular number in a set of data.
Median	The middle value of a set of data when they are written in size order.
Range	The difference between the highest and lowest value of a set of data.

Triangles

Equilateral
All sides and angles equal.

Scalene No sides equal.

12 and 24 Hour Clock

12 Hour Clock	24 Hour Clock
12 midnight	$00: 00$
1am	$01: 00$
2 am	$02: 00$
3 am	$03: 00$
4 am	$04: 00$
5 am	$05: 00$
6 am	$06: 00$
7 am	$07: 00$
8 am	$08: 00$
9 am	$09: 00$
10 am	$10: 00$
$11 a \mathrm{~m}$	$11: 00$

12 Hour Clock	24 Hour Clock
12 pm	$12: 00$
1 pm	$13: 00$
2 pm	$14: 00$
3 pm	$15: 00$
4 pm	$16: 00$
5 pm	$17: 00$
6 pm	$18: 00$
7 pm	$19: 00$
8 pm	$20: 00$
9 pm	$21: 00$
10 pm	$22: 00$
11 pm	$23: 00$

Metric Measurements

Distance

Unit	Symbol	Equivalent
Kilometre	km	$=1000 \mathrm{~m}$
Metre	m	$=100 \mathrm{~cm}$
Centimetre	cm	$=10 \mathrm{~mm}$
Millimetre	mm	

Weight

Unit	Symbol	Equivalent
Tonne	t	$=1000 \mathrm{~kg}$
Kilogram	kg	$=1000 \mathrm{~g}$
Gram	g	$=1000 \mathrm{mg}$
Milligram	mg	

Volume

Unit	Symbol	Equivalent
Kilolitre	kl	$=1000 \mathrm{l}$
Litre	l	$=100 \mathrm{cl}$
Centilitre	cl	$=10 \mathrm{ml}$
Millilitre	ml	

Time

Unit	Symbol	Equivalent
Hour	H / h	$=60 \mathrm{mins}$
Minute	mins	$=60 \mathrm{secs}$
Seconds	secs	$=1000 \mathrm{~ms}$

Imperial Measurements
Distance

Unit	Symbol	Equivalent
Mile	M	$=1760 y d s$
Yard	yd	$=3^{\prime}$
Foot	ft or ${ }^{\prime}$	$=12^{\prime \prime}$
Inch	in or "	

Weight

Unit	Symbol	Equivalent
Ton	t	$=160 \mathrm{st}$
Stone	st	$=14 \mathrm{lbs}$
Pound	lb	$=16 \mathrm{oz}$
Ounce	oz	

Volume

Unit	Symbol	Equivalent
Gallon	gal	$=8 \mathrm{pts}$
Quart	qt	$=2 \mathrm{pts}$
Pint	pt	$=16 \mathrm{floz}$
Fluid Ounce	floz	

Area

Unit	Symbol	Equivalent
Square Mile	mile 2	$=640$ acres
Acre	acre	$=4840 \mathrm{yd}^{2}$
Square Yard	yd^{2}	$=9 \mathrm{ft}^{2}$
Square Foot	ft^{2}	

Converting Units

'Kilo' means thousand and 'milli' means a thousandth
Metric Distance

From	To	Method
cm	m	$\div 100$
cm	mm	$\times 10$
m	km	$\div 1000$
km	m	$\times 1000$

Metric Volume

From	To	Method
l	ml	$\times 1000$
ml	l	$\div 1000$

Imperial and Metric

From	To	Method
miles	km	$\times 1.6$
km	miles	$\div 1.6$

From	To	Method
kg	g	$\times 1000$
g	kg	$\div 1000$

Column Calculations
Commonly used for addition and subtraction.
Some tips to remember:

- Always work from right to left.
- Don't forget to add on any numbers you carry over to the next column.
- For subtractions the largest number is always on the top and it is always 'top take away bottom' as you work through.

3D Shape Families

- Quadrilaterals all have 4 sides (square, rectangle, rhombus, parallelogram, trapezium).
- Prisms are like an elongated shape or a cylinder with edges, such as a hexagonal prism with hexagons on each end.
- Pyramids all have a base with the sides meeting at one point, such as a square-based pyramid or an octagonal-based pyramid.
- Polygons are 2D shapes that usually end in '-agon', such as octagon or nonagon.
- Polyhedrons are 3D shapes that usually end in '-hedron', such as octahedron or dodecahedron.

Angles

- Inside angles of a triangle $=180^{\circ}$
- Inside angles of a quadrilateral $=360^{\circ}$
- A straight line $=180^{\circ}$
- A full circle $=360^{\circ}$
- Opposite angles on crossing lines are equal, for example:

\times and \div by 10,100 or 1000
\times move all digits to the left
\div move all digits to the right

$\times 10$ move all digits	$\div 10$ move all digits
1 place to the left	1 place to the right
$\times 100$ move all digits	$\div 100$ move all digits
2 places to the left	2 places to the right
$\times 1000$ move all digits	$\div 1000$ move all digits
3 places to the left	3 places to the right

Multiplication Shortcuts

$\times 20=$ double it then $\times 10$
$\times 30=\times 3$ then $\times 10$
$\times 4=$ double, then double again
$\times 8=$ double, double and double again.
$\times 15=\times 10$, half it, then add both together.
$\times 50=\times 100$, then half it.

Coordinates

The x axis goes across/horizontal The y axis goes up/vertical

- Coordinates are written (x, y)
- The first number moves horizontally
- The second number moves vertically
- A useful tip is "along the corridor and up the stairs" (although the stairs may be down if you have negative numbers!).

The top number is called the numerator and tells you how many pieces you have out of the possible pieces.

The bottom number is called the denominator and tells you how many equal pieces something is cut into.

You use fractions all the time without thinking, like when you get $\frac{8}{10}$ on a spelling test. There are 10 equal marks available and you've got 8 of them.

Sometimes you will need to compare or calculate using fractions. The easiest way to compare them is to change them to a common denominator (same bottom number).

Do this by multiplying or dividing with the rule: do the same to the top as you do to the bottom.

So: $\frac{5}{12}, \frac{5}{6}$ and $\frac{3}{4}$ can all be made into 12 ths by multiplying the 5 and the 6 by 2 and also the 3 and the 4 by 3 giving:
$\frac{5}{12}, \frac{10}{12}, \frac{9}{12}$

Finding Any Percentage

Once you know that to find 1\% is the same as dividing by 100, you can then multiply that by whatever percent you want!

For example 17% is 17 lots of 1%
So you will need to $\div 100$, then $\times 17$.
There are quick ways of finding some percentage such as $10 \%=\div 10$, but even this long method would work the answer out correctly.

Adding Fractions

1. Change them to a common denominator.
2. Add the top numbers only and keep the same denominator.

Example: $\frac{3}{4}+\frac{4}{6}$

1. Change both fractions to 12 ths
$=\frac{9}{12}+\frac{8}{12}$
2. Add the top numbers only and keep the bottom number: $9+8=17$

So the answer is $\frac{17}{12}$ or simplified to $1 \frac{5}{12}$

Subtracting Fractions

1. Change them to a common denominator.
2. Subtract the top numbersonly and keep the same denominator.

Example: $\frac{3}{4}+\frac{4}{6}$

1. Change both fractions to 12 ths
$=\frac{9}{12}+\frac{8}{12}$
2. Subtract the top numbers only and keep the bottom number: $9-8=1$

So the answer is $\frac{1}{12}$

Dividing Fractions

1. Flip the second fraction over
2. Multiply the two top numbers together to get a new top number.
3. Multiply the two bottom numbers together to get a new bottom number.
Example: $\frac{3}{5} \div \frac{2}{7}$
4. Flip the second fraction over so it becomes $\frac{3}{5} \times \frac{7}{2}$
5. Multiply the two top numbers together $3 \times 7=21$
6. Multiply the two bottom numbers together $5 \times 2=10$

So the answer is $\frac{21}{10}$
Which you can then simplify to $2 \frac{1}{10}$

Roman Numerals

$\mathrm{I}=1$	$\mathrm{VI}=6$	$\mathrm{~L}=50$
$\mathrm{II}=2$	$\mathrm{VII}=7$	$\mathrm{D}=500$
III $=3$	VIII $=8$	$\mathrm{M}=1000$
IV $=4$	$\mathrm{IX}=9$	$\overline{\mathrm{M}}=1$ million

$V=5$
$X=10$

A line over any letter makes it 1000 times bigger.

Decimals

A good tip with decimals is to think of them as money.

For example: $1.2+3.4$
could be thought of as: $£ 1.20$ +
$£ 3.40$ giving an answer of $£ 4.60$
and it seems much easier.
Just don't forget to make it back into a plain decimal in the end.

So $£ 4.60$ would be 4.6

Fractions, Decimals and \%

Fraction	Decimal	Percentage \%
$\frac{1}{100}$	0.01	1%
$\frac{1}{10}$	0.1	10%
$\frac{1}{5}$	0.2	20%
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%

